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The transient process by which an incompressible dissipative rotating stratified 
fluid adjusts to a small change in the rotation rate of its container is examined 
theoretically. The aim is to clarify the effects of the imposed density stratification 
and of the boundary condition specified for the density perturbation on the 
behaviour of the fluid, particularly during the time span when the adjustment is 
performed in a homogeneous fluid. For a weakly stratified fluid in a cylinder, it is 
shown how these two factors govern the nature and intensity of boundary layers 
on the vertical wall which close the secondary meridional circulation generated 
by Ekman layers along the horizontal boundaries. For a more strongly stratified 
fluid, the usefulness and importance of potential vorticity conservation in deter- 
mining the quasi-steady motion is verified, and a calculation for a spherical 
container demonstrates some new features that arise only when the container 
boundaries are not normal or parallel to the rotation axis. It is shown that experi- 
mental results of Holton (1965) are in less good agreement with predictions of the 
linear theory than had been previously indicated. 

1. Introduction 
If a container rotating with uniform angular velocity about a fixed axis and 

filled with an incompressible dissipative fluid has its rotation rat,e increased 
impulsively, the transient process by which the fluid adjusts to the new angular 
velocity of the container is known as ‘spin up’. For a slightly viscous fluid of 
uniform density, Greenspan & Howard (1963) demonstrated that the adjustment 
is controlled primarily by Ekman boundary layers on the container surface. By 
establishing a secondary circulation throughout the fluid which transports 
angular momentum, the layers restore the dominant interior motion to rigid 
rotation much more rapidly than the time that would be required by viscous 
diffusion acting alone. A very interesting variant of this mechanism was described 
by Bretherton & Spiegel (1968) in their model for an astrophysical application 
of spin up (a thorough extension of their ideas was presented by Kroll & Veronis 
(1970)). 

The purpose of this paper is to elucidate the dynamics of spin up in a rotating 
density-stratified fluid when the relative change in rotation rate is inkitesimally 
small. In particular we shall strive to understand the mechanisms by which the 
perturbation density boundary condition and the mean density stratification 
influence motions in and away from the boundary layers. These questions have 
been considered previously in a sequence of papers commencing with one by 
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Holton (1965), but it is fair to say that at least two aspects of the fluid dynamics 
could be clarified by some additional description. Because the motions in the 
spin up of a homogeneous fluid are so different from those of a stratified one, it 
appeared worthwhile to investigate in detail the connexion between these cases 
by studying the spin up problem as a function of the ratio between the inverse 
rotation rate and the characteristic time scale of the mean stratification. By this 
means the transition from dynamics dominated by rotation to  those charac- 
teristic of the interaction of rotation and stratification can be observed. Such 
a procedure was adopted by Barcilon & Pedlosky (19673) for certain steady 
motions in rotating stratified fluids and was implied in some brief remarks by 
Walin (1969) for spin up. We use a cylindrical container and concentrate on the 
region near the vertical boundary wall where the effects of the transition are most 
substantial, i.e. where the influence of the stratification on the largest motions in 
the fluid first occurs as the stratification is increased from zero. Although solu- 
tions have been obtained for all values of the stratification parameter within the 
transition regime, they are presented here only for a specific range wherein it is 
readily apparent how the boundary condition on the density perturbation 
influences the motions. The second feature of spin-up dynamics concerns t,he 
central role of potential vorticity conservation when the time scales of the rota- 
tion and the stratification are comparable. We show that the simplifications 
arising from fully exploiting this property are very helpful in understanding the 
flow in a cylinder and are virtually essential for other container geometries. The 
only non-cylindrical container we consider is spherical, but it is clear that the 
boundary-layer coupling which arises there is common to all situations in which 
the normal to  the container boundary is neither parallel nor perpendicular to  the 
rotation axis (and the direction of gravity). 

All effects resulting from the finite amplitude of the perturbation in rotation 
rate are ignored, and in particular we choose t o  consider the then equivalent 
problem of the ‘spin down’ of fluid initially rotating faster than its container. 
We also neglect the inevitable distortion of the mean stratification by the 
rotation, thereby assuming that even for a density diffusive fluid all motions 
relative to the basic rotation are strictly due to  the perturbation. Although this 
model could conceivably account for the results of actual spin-up observations, 
the purpose of this paper is primarily to  clarify the properties of the model rather 
than to decide conclusively whether its equations are adequate to  predict the 
laboratory behaviour of rotating stratified fluids. Evidence for the realizeability 
of the linear results has been both ambiguous (Holton (1 965) where experimental 
conditions only marginally fulfilled the requirements for the validity of the 
model) and downright discouraging (Greenspan 1968, chapter 6). Our only con- 
tribution to  this question is a brief comparison between the currently published 
experimental data and conclusions of two versions of the linear theory.? 

The initial conditions of the spin-down problem represent a member of the 
class of infinitesimal amplitude flows which in a perfectly non-dissipative 
rotating stratified fluid are steady in time. The methods used in this paper are in 

t Careful experiments by Buzyna & Veronis (to be published in J .  Fluid Mech.) indicate 
that the linear description can be appropriate in laboratory conditions. 
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fact suitable for studying the time variation produced by dissipation of any such 
flow in a container of any shape. We confine ourselves here to spin down in familiar 
geometries because of the great analytical simplifications, the property that an 
initial change in rotation rate is also a member of the corresponding class of flows 
in  a homogeneous fluid, and the considerable previous interest in this problem. 

2. Formulation 
We wish to consider motions of a viscous, heat-conducting fluid rotating with 

uniform angular velocity Cl and stratified under a gravitational force g anti- 
parallel to the vertical rotation vector. The motions are assumed to satisfy the 
Boussinesq approximation to the hydrodynamic equations and to deviate very 
slightly from a time-independent state of rigid rotation and hydrostatic equi- 
librium. Now such a basic state is forbidden in a thermally diffusive medium, but 
it is permissible if we assume that the centrifugal curvature of the mean iso- 
densitylinesisnegligible. This condition, whichmay be stated as Q2Hg-I = FR < 1, 
where H is a representative length scale of the container, is consistent with 
a constant vertical gradient Ap of mean density. The perturbation motion is 
generated by impulsively changing the angular velocity of the container, which 
for the most part is assumed cylindrical to take advantage both of previous 
interest in this geometry and of obvious simplifications. 

If we introduce scales H ,  Q-l, and d k l H  for distance r, time t ,  and velocity u 
of the perturbation motion, we may easily obtain corresponding scales for the 
density p, temperature T, and pressure p in a fluid of average density po. The 
dimensionless equations of motion under the foregoing approximations and with 
respect to a rotating co-ordinate system have been described in detail by 
Greenspan (1968). Neglecting non-linear terms by the additional requirement 
E < 1, we write those equations in the following way: 

(2.1) 

(2.2) 

v.u = 0, (2 .3)  

in which p has been eliminated by the equation of state p = - T ;  k is a unit 
vertical vector; E = vQ-IH2 is the Ekman number for kinematic viscosity v ;  
a is the Prandtl number; and S = (Ap)~,j-~g(2Cl)-2H-1 is the square of the ratio 
of the Brunt-Vaisala frequency to twice the rotation rate. The parameter E is 
assumed very small compared to one, a is at  least O( 1) with respect to E, and 
S is no larger than O( 1). 

If we refer the perturbations to a co-ordinate system rotating with the slightly 
altered angular velocity and employ cylindrical co-ordinates ( r ,  4, z )  with 
corresponding velocity components (u, v, w),  we can impose the initial conditions 

and either set of boundary conditions 

aqat  + 2ii x u + vp - ~ t ;  = E V ~ U ,  

aT/at + 486 .u = r1EV2T, 

u( t  = 0) = r$, T ( t  = 0) = 0, (2.4) 

u = T = O  on C, 12.5) 

u=f i .VT=O on C, (2.6) 
44-2 
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where X is the surface of the circular cylinder 

{ x  = +i-i, 0 6 r < A ;  0 6 z < 1, r = A )  

and A is the exterior unit normal vector. We denote by problem I or I1 the 
system, (2.1)-(2.4) subject to (2.5) or (2.61, corresponding to zero perturbation 
temperature or heat flux on the rigid walls. For the linearized problem we may 
assume the motion remains independent of the azimuthal angle q5 and thereby 
introduce a stream function 11. so that 

u = a$/az, w = -r-1i3(r$)/&-. 

Certain fundamental properties of the fluid motion following the initial dis- 
turbance greatly simplify the determination of the decay process. I n  particular, 
if the fluid were strictly non-dissipative, the motion represented by (2.4) would 
be steady for later times because it is an allowed geostrophic flow, satisfying time- 
independent versions of (2.1)-(2.3) with zero Ekman number and the appropriate 
inviscid boundary condition. The motion thus owes its time variation entirely to 
the presence of the very small but non-negligible dissipation, and although there 
is a fairly extensive collection of initial disturbances which do possess this 
property (Howard & Siegmann 1969), it is easy to imagine simple initial per- 
turbations which do not. Greenspan (1968, e.g. p. 56) has indicated the rather 
severe analytical difficulties which arise in the solutions of such problems for 
a homogeneous fluid (S  = 0). 

Another important feature is evident if we consider the evolution of (2.4) on 
dimensionless time scales much shorter than the dimensionless time scale E-l 
characterizing diffusion over a distance the size of the container. As might be 
anticipated, on sufficiently short time scales dissipation will induce only asymp- 
totically small corrections to the flow except in certain asymptotically thin 
regions adjacent to the boundaries. This assumption underlies the analysis here 
and all previous studies of spin down. At any time we refer to that part of the 
fluid away from these boundary regions as the interior region. In  order to deter- 
mine the most interesting aspects of the decay process, it is germane to ascertain 
the earliest time scale 7 shorter than E-l on which the interior motion is signifi- 
cantly altered (if one exists !), the structures of the boundary regions and the 
motions therein on this time scale, and the physical process by which the interior 
flow is changed. 

I n  a homogeneous fluid, Greenspan & Howard (1963) demonstrated that 
Ekman boundary layers, which form with thickness O(E&) on the horizontal 
surfaces in the dimensionless time t = O ( l ) ,  dissipate the imposed vorticity in 
the interior during the time when 7 = E*t = O(1). The Ekman layers relax the 
mean vortex lines by expelling an O(E4) flux, so that their effect on the interior 
velocity fields during the time scale 7 = O( 1) may be expressed by the compati- 
bility condition 

Using this relation an adequate picture of spin down may be obtained by just 
determining the 7-scale evolution of the significant motions in the interior and 
in the other boundary regions which, unlike the Ekman layers, do not have 

w = + ~ E ~ R . v x u  on x = i k i .  (2.7) 
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controlling influences on the interior flow. This procedure essentially ignores the 
detailed development of the small motions in the interior and the substantial 
motions in the boundary regions on time scales shorter than 7. It is important to 
realize that the description of spin down on the dynamically interesting time 
scale is not impaired by this simplification, and all the motions on the intervening 
time scales could be included but with a great loss of clarity (Greenspan 1968, 
p. 41). It is also true, however, that certain developments in the boundary 
regions on time scales shorter than r possess somewhat unexpected features 
(Barcilon 1968). 

Now the structure of the Ekman layer depends on a balance of Coriolis and 
viscous forces acting on the horizontal velocity components and is essentially 
unchanged in an inhomogeneous fluid. Thus except for fluids with extremely 
rapid thermal diffusion or with exceedingly strong stratification which are not 
considered here, the Ekman layers can form and we are free to apply (2.7) in a 
stratified fluid also. Jndeed, Ekman layers must form in order to satisfy the no 
slip boundary condition on the azimuthal velocity, because on short time scales 
any height variation of the main interior velocity component is forbidden and 
the other allowable boundary layer on the horizontal walls (a diffusion layer with 
thickness O(t4Eg)) is only capable of satisfying a temperature boundary condition. 
The presence of Ekman layers therefore demands that the initial interior vorticity 
is in some way modified when 7 = E*t = O ( l ) ,  because from (2.7), (2.3) and (2.1) 
with slat = O(E*), it is clear tha.t this is the shortest time on which the interior can 
support both the O(E4) flux injected into it by the layers and a time variation in 
the O( 1) velocity. 

In analogy with the case of a homogeneous fluid, we therefore plan to focus 
attention on developments during the r time scale. We reiterate that the primacy 
of this time scale would be displaced if the container were mechanically stress free 
and thus would suppress strong Ekman layer formation, or if the thermal 
properties of the fluid were to violate the conditions v 2 0(1), S < O(1) and 
would thereby introduce a significantly shorter time scale. In  addition, we 
emphasize that the successful study of the spin-down process on the r time scale 
by neglecting details of the motions on earlier time scales relies on the funda- 
mental assumptions of a model with negligibly small parameters e and Fa. 
Formal bounds on these parameters so that they do not upset the relevant 
dynamics expressed by (2.1) to (2.6) are (e,F') < E4, and these constraints 
represent the most important limitations on the validity of our solution pro- 
cedure. We conclude this summary of restrictions by pointing out that even 
using the 'linear' model with moderate stratification, considerable care may be 
required to demarcate the extent of the interior region on the r time scale (Walin 
1969) and to adequately describe the motions in the boundary regions. 

In a stratified fluid for which S = O( l),  the adjustment in the interior velocity 
which actually occurs on the 7 time scale is governed by balancing two effects of 
the meridional circulation induced by the Ekman layers, specifically vortex tube 
expansion (or decrease of relative vorticity) against departure from horizontal 
of the isodensity lines. This conservation mechanism is at the heart of previous 
spin-down analyses (Holton 1965; Pedlosky 1967; Walin 1969; Sakurai 1969a, b) ,  
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and we shall discuss it further in $ 4 .  For the present we observe that if the stratifi- 
cation is weak S < O( l),  the lowest-order dynamics of the interior region on the 
T time scale are the same as in a homogeneous fluid, and we shall examine in § 3 
how the motions in the other boundary regions differ. This behaviour of the time- 
dependent motions in a weakly stratified rotating fluid is rather striking in 
comparison with the results of Barcilon & Pedlosky (1967b) and Pedlosky (1969). 
They realized that for time-independent motions the lowest-order dynamics of 
the interior region are homogeneous only in the much more restrictive case 
S < O(E4). Because vortex tube expansion cannot be supported by motions with 
very long time scales, the interior circulation required to maintain the Ekman 
layers will be inhibited by the stratification unless the latter constraint is satisfied. 

3. A mathematical description of weakly stratified spin down 
The fact that the lowest-order interior dynamics when S < O(1) are the same 

as in a homogeneous fluid follows immediately after scaling (2.1) and (2.2) with 
t = E - k  and $ = EBX: 

1 2 V  = P,, ‘v,+2X, = O(E*),  P, = T, 
T, + 4s( l /r )  (Xr), = O(E&/(T). 

( 3 . 1 ~ ~ - d )  

Capital letters denote functions with the interior region as their domain, and 
subscripts represent partial derivatives. Using (2.4) and (2.7), the solution for 
the spin-down problem is 

V = r e-2T, 

T = O(S) = 8412 - a) (1  - e-27). 

X = r(x - +) e-2T, 
(3.2 a+) 

The weak stratification leads to a small adjustment in the temperature field, but 
otherwise there is no change in the interior solution and particularly in its driving 
mechanism. Since the temperature boundary condition on the horizontal walls 
is satisfied by a diffusion layer, the remaining question is the manner in which 
the boundary conditions at the vertical side wall are satisfied. 

In  a homogeneous fluid, Greenspan & Howard (1963) showed how two 
Stewartson boundary layers (thicknesses O(E*) and O(E)) )  conspire together to 
satisfy the vanishing of the three velocity components at the side wall. Barcilon 
S: Pedlosky (1967b) described the evolution of the Stewartson layers as S 
increases from zero and used the three resulting boundary layers which occur 
when O(E%) < S < O(E4) and (T > O(1) to solve a steady flow problem. We now 
coiisider these parameter ranges and show how to exploit those boundary layers 
to complete the solution of the time-dependent spin-down problem. There were 
two prima.ry purposes which motivated this exercise. First, it was desired to 
examine the specific manner in which the temperature boundary condition 
influences the solutions for very weak stratification, since as we shall note in the 
next section that condition is known to effect the spin-down process when 
the stratification is larger. Symptoms of this behaviour are indeed found in the 
stratification range assumed here. Secondly, it was planned to indicate how 
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the aforementioned boundary-layer solutions require modification in order to 
usefully describe a reasonably representative time-dependent problem. The most 
distinctive feature occurs in the solution for the thickest boundary layer viewed 
as a function of Prandtl number. 

For the sake of brevity no discussion will be given here of the origin and 
structure of the side-wall boundary layers; considerable insight may be gained 
from the clear treatment by Barcilon & Pedlosky (1967 b) .  We introduce without 
further comment the boundary-layer variables 

A - r  A - r  
E )  :4 ) s4 ’ Eg S-k 

E=A-T(l+h-+ ... , T = -  p = -  

for the ‘diffusion’, ‘hydrostatic ’ and ‘buoyancy’ layers, respectively. The para- 
meter h is introduced because higher-order terms in the balance equations for the 
diffusion layer are required, and the constant h might conceivably be necessary 
to keep the expansions uniformly valid in <. We denote by bar, caret and tilde 
the fiiiictions of boundary-layer form (i.e. which vanish for large values of the 
boundary-layer variable) with each of these regions as their domain. 

We consider problem I as defined in the preceding section and scale the correc- 
tion fields in the following way: 

V = $O)+(S/E4)Tj(’)+ ..., 
$ = E&[X(O) + (X/Ei) dl) + . . .I, 

= E@O) + fX/Ea) jP) + . . .], 
- 

T = SE-@(o) + . . . . 
0 = SE-@(o), fi = E&S-!ifi(O), 

$ = E&$O), 
9 = S%E-&j)(O), 

$ = E?$O), 

jj = Efj’-%jj(O), 

f’ = X%E-?@@), gi = S%p‘Co). 

From the boundary-layer approximations to  (2.1) and (2.2), the governing 
equation8 may be written 

2@(0) = -m, P5 - 

(3.3 a-d) 

(3.4 a-c) 

(3.5 a-d) 
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The only boundary conditions at  the side wall which can and must be satisfied 
by the boundary-layer functions defined above are, from (2 .5) ,  

(3.7a-a) 1 V ( r  = A )  +V'"(( = 0) + (S /Ei )  [ V y f  = 0) + W)(q = O)] = 0, 

X ( r  = A )  + p)(t = 0) + f ( O ) ( q  = 0) + Z(*)(p = 0) = 0, 

z y p  = 0) = 0, 

F(O)(t = 0) = 0. 

It is of course the necessity for satisfying these conditions, as well as the structure 
of the individual boundary layers, which precisely dictate our scaling of the 
boundary-layer variables. The relevant initial conditions are 

~ ( 0 )  = TKO = ~ ( 1 )  = 0 on 7 = 0, (3.8 

and although the compatibility condition (2.7) is itself only approximate, it may 
be applied to the boundary-layer functions here because: (1) the three side-wall 
layers are each thicker than the Ekman layer, and (2) the relevant higher-order 
terms in the side-wall layers are larger than the error in (2.7) 

~ ( 0 )  = + I@) - 1) - + IgW, f ( 0 )  = 0 on z = 1 + 1. (3.9 a-c) 
- 2  , 2 - - 2  2 - 2  

Equations (3.3)-(3.9) comprise the system we must solve, and again we shorten 
the details by omitting the more routine calculations. The diffusion layer has as 
its primary purpose the satisfaction of the no-slip boundary condition on the 
O( 1)  azimuthal velocity. The lowest-order velocities, which are the same as those 
in a homogeneous fluid, are found from ( 3 . 3 ~ - c ) ,  (3.7a),  ( 3 . 8 ~ )  and ( 3 . 9 ~ ) :  

(3.10 U-C) i 8 0 )  = - A e--27 erfc (@hi), 
x ( O )  = -A(~-g)e-~.erfc(t/27~), 

W(0) = 2) = A e-27 (m-)-h ( z  - 8) exp ( - (2/47). 

The lowest-order azimuthal velocity is independent of z, and the interior 
meridional circulation expressed by ( 3 . 2 b )  is closed by the meridional flow in the 

(3.11) 
diffusion layer 

This circulation, which exhibits the intimate coupling between the Ekman layer, 
interior, and diffusion layer, drives a temperature variation which is determined 
by ( 3 . 3 4 ,  ( 3 . 7 4  and (3.8b). For our purposes it is convenient to express T(O) as 
a Laplace transform: 

- 

X ( r  = A ) + p ' ( (  = 0) = 0. 

F'fLo)((, z, s) = e-57 F(0) (t, z, 7) d r  
SOrn 

= 4A(x - i) (8 + 2l-i cr[s( 1 - c) + 21-l [e-t(s+2)6 - e-5(su)']. (3.12) 
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As is obvious from (3.4)) T(O) generates a x-dependent (or 'baroclinic') portion 
of the higher-order azimuthal velocity in the diffusion layer. From (3.4 a, c) and 
(3.12), the expression for 212' may be oonveniently written 

the as yet undetermined function a representing the z-independent part of the 
higher-order azimuthal velocity. An equation for a is found by a procedure which 
is analogous to the derivation of the equation satisfied by E1;0), i.e. we integrate the 
Laplace transform of (3.4 b )  with respect to z and apply (3.9 b )  to yield 

The solution is given in terins of an arbitrary function P(s) which will be deter- 
mined from the boundary condition (3.7 a): 

a(f,  s) = ( ~ ( s )  - ~ ( s  + 2)-* (A+ ~a[s( l -  u) + 21-1) 61 e-5(5+2)+ 

( ST ) 6 [2+T] 1 s(1-a) e - w +  + Aa[s( 1 - a) + 21-2 ~ 

s + 2  

The presence of a term multiplied by the boundary-layer variable 5 is a 
potential source of difficulty, since when 5 = O[(S/E*)-l] the second term in the 
perturbation seriesfor gL appears to be as important as the first term. To prevent 
the series from failing to be uniformly valid over the whole domain of 6, therefore, 
it is necessary to  choose h = - when a = 1.  When (T + 1, however, the proper 
choice of h is zero. We may see these results by comparing the asymptotic 
expansions for large 6 of E(0) and the Laplace inversion of the offending portion 
of (3.13), namely 

y(s) = - ~ ( s + 2 ) - * ( ~ + g a [ ( s + 2 )  (1 -a)+2aj-1) 6e-[(s+2)+. 

If we let x = 62-lr-9, then for a = 1 the inversion is 

y(7; a = 1) = - A  e-ZTx(h+?-) 1 2  2n- te -9 .  

Recalling the expansion 

erfcx N n-~z-1e-Z2(1+0(x-2)} (z-+co and largzl < 3n/4), 

we find that the ratio of (3.15) to (3 .10~)  is 

x(h + +z) 2 n d  e-5' 
n-&x-l e-x' 

~ _ _ -  - - 2X2(h+&+0(1). 

(3.14) 

(3.15) 

(3.16) 

Unless h = - & this ratio is surely unbounded for large x. On the other hand, we 
may write the inversion of (3.14) for the case a < 1 in the form 

y(7; a < 1) = - A  e-2r [xh2n-9 e-x2 - 1 7 4  6 6x e--r82 Im {eiz287' erfc (x + i874)}], (3.17 
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where S = [2cr/(1 -CT)]* and we have used (812.5) in Campbell & Foster (1948). 
Now from (3.16) we may approximate the function in the curly brackets of 
(3.17) by 

y(7; cr < 1) - - A  e-2r[27r-ih~e-”~ + $(7 i6 )2xr6 (x2  + S27)-1  e-xa( 1 + O(x-2))] ,  
(3.18) 

and the ratio of (3.18) to (3 .10a)  is 

+ O(x-2). 2x2h + O( 1) + - ___ 
627 x2 
6 x2+S27 

The ratio is bounded for large x and finite 827 provided A = 0. When cr > 1 the 
inversion of (3.14) is only slightly different from (3.17), and the conclusion h = 0 
is again necessary. 

Before proceeding with the solutions in the other boundary layers, we should 
comment, on the significance of the different values for A. It is true, of course, 
that some sort of distinction between the mathematical representations of 
solutions for CT = 1 and for cr + 1 but cr = O( 1) is inherent to the detailed analysis 
of a large class of motions in a dissipative inhomogeneous fluid. It should be 
obvious that the behaviour of h(u) here is a consequence of a non-uniformity of 
the limit cr+ 1. Since cr is the ratio of two physical parameters of the fluid, it 
appears justifiable to take the limit before computing a property of the solution 
(namely A)  rather than after, and this process leads without inconsistency to the 
results above. Because the difference in the values of h amounts to a small shift 
in the effective boundary-layer thickness, even the lowest-order diffusion-layer 
solutions are affected. The basic question is, however, why should the limit 
CT + 1 be non-uniform? The requirement of precisely identical diffusive properties 
of momentum and temperature imposes a kind of mathematical degeneracy on 
the flow equations. For our specific system of equations (2.1)-(2.3)) the degen- 
eracy is reflected in the fact that the governing equation for the stream function 
which may be derived when cr = 1 is sixth order in the spatial variables, instead 
of eighth order as when CT =I= 1. This situation differs from that considered by 
Barcilon & Pedlosky (1967 b ) ,  who remarked that the parameters cr and S only 
appear multiplied together, indicating the absence of any special significance 
for cr = 1. Nevertheless, their diffusive boundary-layer solutions do require a 
correction factor h for all values of US. This is not at all surprising in view of the 
aforementioned degeneracy if we recall that their steady equations are reduced 
in order from the time-dependent equations (2.1)-(2.3) to the same extent as are 
the time-dependent equations when CT = 1. 

With consistent expressions at  hand for the Laplace transforms of the diffusion- 
layer flow, we can fulfill our goal of showing how the remaining boundary condi- 
tions are satisfied at  the side wall. However, we should point out that complete 
inversion of the transforms T$) and rfg’ cannot be obtained in any reasonably 
illuminating form. We emphasize that for our purposes this is not a severe 
handicap because we are interested mainly in the roles and key properties of the 
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boundary layers, which can be determined without finding the explicit 
7-dependence of the solutions. 

The form of the stream function in the buoyancy layer is found from (3.6), 

$O) = e-p'*[B(z, 7 )  sin (pa* + in-) + C(x, 7 )  cos ( p r f  + an)] (3.19) 

and C(z, T) = 0 by (3.7 c) so that the largest vertical velocity component at the 
side wall vanishes. The solutions in the hydrostatic layer may be expressed in 
series using (3.5) and (3.9c), 

a, x e-rr-*nnl] 

Now the vanishing of the higher-order portion of boundary condition (3.7a) 
requires that both the baroclinic and z-independent portions of TP) must be 
matched at  the side wall, thereby determining all the A@)'s and the function 
B(s) in m((, s), cf. (3.13). The O(EB) meridional circulation induced in the hydro- 
static layer is closed by the buoyancy layer, which, as is now well known, acts 
dynamically much like the Ekman layer in requiring a mass influx for its main- 
tenance. In this way the function B in (3.19) is fixed in terms of the known 
A(n)'s by (3.7 b) .  We omit the details, noting only that we use the series expansion 

sin nm a, 

(2-4) = - c [1+(-)7q- 
n=l (n4  

to arrive at  

A',)(S) = -A[l+(-)"][s(l-a)+2]-1 1- - [ (:+r2jtl, 

P ( S )  = -Ar[s(l-C7)+2]-1 - 1 -  - [A[ (SY2j6] 

The inversions of B, and AF) are fairly complex except when r = 1, when 
a simple expression is available from Campbell & Foster (1948), 

A(7-fo) = 1, A ( 7 - f ~ )  N [ 2 ( 2 n ) 4 ~ $ ] - ~ .  

The solution of problem I1 proceeds in much the same way, and in particular 
we find the same expressions for the lowest-order diffusive-layer velocity com- 
ponents and the same values for the factor A. An important difference is that the 
baroclinic portion of @) vanishes at  the side wall, because (3.7 d )  is replaced by 
the appropriate boundary condition for a wall with zero heat flux, Fp)  ([ = 0) = 0, 
which when combined with (3.4 a, c) implies %L1) (g = 0) = 0. This means that the 
agent which forces the presence of h ydrostatic and buoyancy 1a;yers in problem I 
is absent in problem 11, since in the latter case the z-independent function /3 is 
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fully capable of satisfying the higher-order part of (3.7 a) .  Consequently, the 
hydrostatic and buoyancy layers disappear to the order to which w0 scaled them 
for problem I, i.e. they both contain meridional circulations smaller than the 
Ekman layer flux of O(E4). Some detailed consideration reveals that the buoy- 
ancy layer must match the O(E4) vertical velocity of the diffusion layer at the 
wall, thereby specifying the strength of the buoyancy layer flux as O(EQX-i). 
The complete determination of all the arbitrary parameters of the hydrostatic 
and buoyancy layers is rather complicated, because the relevant boundary condi- 
tions become tangled up with higher-order terms from the diffusion layer. 

In  summary, we remark first that the stratification does not inhibit the 
complete removal of the initially imposed O( 1) vorticity during the time scale 
r = O(1) either in the interior or throughout the boundary layers. The most 
significant effects of the stratification are the shift in the diffusive boundary-layer 
thickness when cr= 1 and the z-dependence of the velocity component W 
throughout the diffusion layer. Whether the higher-order baroclinic azimuthal 
velocity is dynamically important depends on whether it is capable of driving 
the hydrostatic and buoyancy layers, which in turn depends on the temperature 
boundary condition as we have seen. The buoyancy-layer flux for problem I 
remains O(E4) as S increases from O(E3) to O(Et) ,  but for problem I1 it decreases 
from O(Ei5) to O(E4). Now the significance of this extremely small difference in 
circulation strength is that it is a consequence of the mechanism by which the 
thermal boundary condition weakens the circulation in the particular boundary 
layer which is most characteristic of a stratified fluid. The same mechanism 
causes the interior flow properties to differ with the thermal boundary condition 
when the stratification is much larger. 

We conclude this section with some brief remarks on the form of the solutions 
for values of S outside but nearby the range O(E%) < S < O(E4). For smaller S ,  
the two Stewartson layers exist along the side wall. It can be shown that the 
lowest-order solutions in the layers with stratification are the same as those for 
a homogeneous fluid when S < O(E%) for problem I and when S < O(E3) for 
problem 11. Once again the significant effect is whether the largest baroclinic 
azimuthal velocity component in the outer layer is x-dependent at the wall. For 
problem I the flux in the inner Stewartson layer increases like O(SE-*) for 
S 2 O(EQ), which is consistent with both the homogeneous value O ( E h )  
(Greenspan st Howard 1963) and the O(E4) flux a t  the O(EP) stratification where 
the buoyancy layer fmt appears. When X = O(E4) the hydrostatic layer has 
thickened to the extent that it has merged with the diffusion layer, a complication 
tending to confuse the simpler picture of the roles of the individual layers for 
smaller S. However, on the basis of that picture, the following easily demon- 
strable results should appear at  least plausible, if not obvious. For problem 11 the 
combined O(E4) layer returns the O(Ea) flux from the interior to the Ekman 
layers and has a baroclinic lowest-order azimuthal velocity. The buoyancy layer 
then matches the largest vertical velocity component at the side wall and 
requires an O(E2) flux. In  problem I the combined layer has a x-independent 
lowest-order azimuthal velocity and only the buoyancy layer possesses an O(E4) 
meridional circulation with which to close the interior secondary flow. In  this 



The spin down of rotating stratijed Jluids 701 

case an O(Ei) x O(Ea) corner region is necessary at the top and bottom of the 
combined layer in order to satisfy no slip conditions on the z-independent 
azimuthal velocity. The main reason for mentioning here the results for S < O(E8) 
and S = O(E4) is to lend more credence to those for intermediate values of S by 
suggesting the similarities near the points of common applicability. The details 
of the former are omitted because they are lengthy and are not intrinsically 
interesting. 

4. Potential vorticity conservation 
It follows immediately from (2.1) to (2.3) that 

a 
- [2k. V x u + X-lk .  V T ]  = O(E, Ea-l). (4.1) at 

When X is order one the balance between changes in relative vorticity and the 
horizontal deflexion of the constant temperature lines controls motions in the 
interior region, for time scales shorter than those of viscous dissipation and heat 
conduction (in fact, it may be appropriate to define the extent of the interior as 
the region where this balance holds). Because of the conservation of the quantity 
in (4.1), the potential vorticity, the solution of the spin-down problem on the 
T time scale represents only a rearrangement of the potential vorticity which is 
imposed by the initial change in rotation rate. The redistribution is accomplished 
by the thinnest boundary layers, which modify the interior flow in such a way 
that the motions remaining when T becomes large satisfy certain boundary condi- 
tions, specifically those for which the thinnest layers themselves are required 
at finite values of 7. 

The essential linear dynamics governing spin down in a rotating stratified fluid 
are thus quite simple, a fact worth emphasizing in view of the analytic complica- 
tions which arose in several earlier treatments. Since a correct solution for the 
transient development of the potential vorticity in a cylindrical container was 
first published by Walin (1969), our aim in this section is to  explore some aspects 
of the spin-down process with S = O(1) which have not yet been completely 
resolved. 

Although the thermal boundary condition is known to influence the interior 
flow, the characteristics of the effects have not been fully described, and a rather 
special solution for a spherical container is quite useful for this purpose. The 
solution illustrates the most effective procedure for finding expressions for all or 
part of the flow and, in addition, demonstrates a type of boundary-layer coupling 
which cannot occur in a cylinder but which is representative of all non-cylindrical 
geometries. Results of Pedlosky (1967) and Sakurai (1969 a, b )  for the cylinder 
are also clarified. A comparison between predictions of the linear model and 
laboratory observations of spin down by Holton (1965) indicates that even though 
there is qualitative agreement between the proper theoretical solution and data, 
the agreement is not nearly so good as comparisons in Holton’s paper suggest. 
We conclude with a comment on the eventual dissipation of the imposed potential 
vorticity in the interior region. 
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Interest in the spin-down problem has been confined to rotating stratified 
fluids in cylindrical containers, largely because any other container shape aggra- 
vates the already severe experimental difficulty of producing a stable state of 
stratification. None the less, even with this simplest imaginable geometry, the 
nature of the boundary conditions for (4.1) caused theoretical difficulties in the 
analytical description of spin down. Although the asymptotic solution for large I- 
is known, as yet the time-dependent solution for problem I has not been obtained, 
and consequently the manner in which the interior flow pattern evolves is 
uncertain. In order to improve understanding of the time development for fixed 
temperature boundary conditions, it was felt that a theoretical examination of 
a fluid contained in a sphere would be potentially helpful. The simplest procedure 
to obtain a solution is to first find the interior asymptotic azimuthal velocity and 
temperature fields, which by conserving potential vorticity satisfy the following 
equation in cylindrical co-ordinates, 

2r-'(rVm),+ S-lT,, = 4, (4.2) 

along with a homogeneous boundary condition on the sphere r2+z2 = p2 = 1 
(the sphere radius is the length scale H) .  This solution by itself obviously may not 
satisfy the spin-down problem. However, the initial-value problem, and any 
other one compatible with the quasi-geostrophic model for that matter, can be 
solved providing a spatially complete set of solutions can be found to the homo- 
geneous form of (4.1) with a homogeneous but time-dependent boundary 
condition. These solutions are the eigenfunctions in a problem for which the 
eigenvalues are the modal decay rates. The known solutions are then superposed 
in such a way that in combination with the asymptotic solution the initial condi- 
tions are satisfied. We shall demonstrate that it is easy to  find the asymptotic 
solutions for the spin-down problem and that separable time-dependent solutions 
are accessible only in the special circumstance when the product crS is exactly 
one. In  that case only one time-dependent mode is required to satisfy spin-down 
initial conditions. 

Determination of the boundary conditions for the interior problem of course 
requires analysis of the boundary layers, which may be represented by the 
variables 

These layers are referred to here as the 'inner ' and 'outer ' or 'diffusion ' layers 
respectively, and to emphasize their relation to those in the cylinder, we denote 
by tilde and bar the boundary-layer correction functions corresponding to each 
of these regions. We use spherical co-ordinates (p,  6, q5) and scale the correction 
fields in the following manner: 

6. i; = & = Et@, 
0.6 = B = p'o), 

a = E&W, 

p = E$?(O), 
. - A  u. + = v" = v"W, = GCO), 

?r = T(O), = g?O), 

p = EqjlicOt, jj = E&jj(O. 
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The boundary-layer approximations to (2.1)-(2.3) are written next, noting that 
(2.1) has three components and that & = cos Sp  ̂- sin 88: 

(4.3 a-e) 

(4 .4~-e )  

The scaling of the dependent variables is not a necessary step, but here as in 
5 3 it serves to greatly simplify the presentation of the boundary-layer equations. 

The boundary condition satisfied by the interior fields as i- becomes large is 
required first. Now the inner layer demands an O(E4) ratio between the magni- 
tude of the velocity normal to the boundary and the magnitude of the tempera- 
ture and tangential velocity fields, as is clear from (4.3) and may be anticipated 
from the connexion between the dynamics of this layer and the operation of the 
buoyancy and Ekman layers. Consideration of (2.1)-(2.3) demonstrates that on 
time scales longer than O(E-4) the interior region cannot support radial velocities 
as large as O(Et) ,  and consequently the inner layer cannot maintain order one 
temperature and tangential velocity fields on such time scales. Only the outer 
layer, thickened by diffusion beyond a distance O(E2) from the boundary, is 
therefore capable of sustaining motions for i- -+ co as large as the interior azi- 
muthal velocity and temperature fields. Furthermore, the fields in the outer 
layer are connected by (4.4b), since fluid particles undergoing azimuthal motion 
are deflected by the Coriolis force across the isodensity lines of the mean stratifi- 
cation, a situation which can be sustained only if the particle density adjusts 
itself to exactly match the density of its new surroundings. The combination of 
(4.4 6 )  and the boundary conditions 

V,(p = 1)+,(0)(5 = 0) = 0, 

Tm(p = 1) + T(O)(E = 0) = 0, 

insists that the interior fields on their own satisfy 

2cosSV,-sin0Tm = 0 on p = 1. (4.5) 

The solutions to (4.2) and (4.5) which satisfy the additional obvious requirements 
of geosixophic and hydrostatic balance (3.1 a, c) are 

v, = - 
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For a nearly homogeneous rotating fluid spin down is essentially completed as 
T -+ co, while for a strongly stratified rotating fluid the initial azimuthal velocity 
is only slightly modified and an increase in the stratification arises to ensure 
potential vorticity conservation. The particular simplicity of the solution (4.6) 
results from the constant, initial distribution of potential vorticity, although 
(4.5) must apply for any initial conditions. 

We next consider the determination of the time-dependent solutions on the 
time scale T = O( 1). The boundary conditions to be satisfied are 

T(p  = l)+T(O)(E = O)+T(O)([ = 0) = 0,) 

(4.7u-a) 

8 .  U(p = 1) +E2'6i(01 (5  = 0) = 0.) 

Using (4.4b) and the analogous relation derived from ( 4 . 3 ~ )  and (4.34 for 
functions in the inner layer, 

[ZUS sin 8 8 0 )  + cos 8P(0)lSS = 0, 

( 4 . 7 ~ )  and (4.7b) may be combined to yield the single condition 

2 8 0 )  (6 = 0) [a8 sin2 8 + cos2 01 
= cos8[sinOT(p = 1)-2cos8V(p = I)]. (4.8) 

From ( 4 . 3 b d )  the governing equation in the inner layer in terms of a single 
variable is 

fip&sss + 4ijtp5) m4 = 0, m4 = US sin2 8 + cos2 8, 

and the boundary-layer solution satisfying (4.7 c) and (4.8) is 

iP) = (cos 8/2m4) [sin 8T (p = 1) - 2 cos OF' (p  = i)] e-mc cos mc, 

,@) = (1/2m2) [sin 8T (p = 1) - 2 cos OV (p  = l)] e-mc sin mc. 

Then (4.3e) and ( 4 . 7 4  give the boundary condition on the interior circulation, 

The solution in the outer layer, satisfying (4.7 b )  and the equation 

v',") - ~m-4[S  sin2 8 + cos2 81 ~ t ; " s )  = 0, 

is not needed explicitly to solve the interior problem, although for the time- 
dependent solution here as for the asymptotic solution before, a knowledge of 
the role of the outer layer in satisfying the boundary conditions is essential. 

The time-dependent solutions are obtained by solving (4.1) and (4.9), written 
with the help of (3.1 b )  and ( 3 . 1  d )  in terms of the stream function defined in 0 3: 
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Separable solutions of this system exist when m = 1, and since we regard the 
Prandtl number as representing a fixed property of the fluid, the requirement 
on m means that the solutions are restricted to  the particular stratification with 
S = rl. We note thai? when US = 1 the buoyancy and Ekman layers in the 
cylinder have exactly the same thickness, so in spherical geometry the constraint 
implies that buoyant and Coriolis effects are exactly comparable in the inner 
boundary layer. Although this severe parametric restriction is indispensable in 
order to determine mathematical expressions, there is no pressing physical reason 
why the solutions should differ significantly if US were close to  but not precisely 
one. 

When S 2 1 the solutions separate in prolate spheroidal co-ordinates ( f , ~ )  
defined by 

and they may be expressed in terms of associated Legendre polynomials 

r = (1-u2)t(g2-(S--l))fr and z = S4fu 

(4.10) 

A+- (n+ 1) (X-t 1). I 
The extension to the case S < 1 using oblate spheroidal co-ordinates is straight- 
forward, but it is worth mentioning that only for modes n = 1 and 2 the spatial 
structure is independent of S and the corresponding decay rates are 2 and 
25+ 1, respectively. The first mode represents a uniform vertical flow with. 
everywhere constant temperature and zero azimuthal velocity, while the second 
mode has for its streamlines a family of hyperbolas in the r ,  z plane with asymp- 
totic lines r = 0 and z = 0. This mode, in addition, has an everywhere uniform 
vertical component of vorticity and is thus the only mode excited in spin down. 
Using (4.6) the especially simple solution to the spin-down problem in the sphere 
when US = 1 is therefore 

From (4.1 1) it is clear that the vorticity relative to the rotating reference frame 
decays uniformly inside the sphere, in sharp contrast to the result for a homo- 
geneous fluid (Greenspan 1968, p. 63) for which the relative vorticity decays more 
rapidly near the equator and actually changes sign as r increases. The small S 
limit of the expression for the vorticity derived from (4.11) is in fact identical to 
the homogeneous fluid solution near the poles of the sphere, and the qualitative 
disagreement as the equator is approached is due to the increasing dominance 
of buoyancy effects in the inner boundary layer implicit in (4.11). This dominance 
retards the development of the interior vertical velocity which is necessary for 
the effective operation of the vortex tube stretching mechanism. In  this way the 
small S limit of (4.11) describes the behaviour of a fluid in which the only direct 
influence of the stratification occurs on the structure of the dissipative layers on 

45 F L M  47 
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non-horizontal boundaries. If in this limit the effects of stratification in the 
dissipative layers are suppressed by completely preventing thermal diffusion or 
by imposing thermal insulation on the boundary, then the homogeneous result 
will be applicable in the interior. On the other hand, if S = O(1) with either of 
these conditions, then the initial order one azimuthal velocity will not vary at  
all on the r scale, since a strong inner boundary layer cannot form and no 
condition analogous to (4.5) holds. 

The difference in flow patterns depending on the thermal boundary condition 
is of course one of the issues confronted for weak stratification in 8 3. In fact the 
existence of the modal solutions (4.10) requires the boundary conditions (2.5) 
instead of (2.6), and these modes rearrange the initial potential vorticity so that 
(4.5) can be satisfied after the inner layer decreases in strength. In a cylindrical 
container with thermally insulated conditions (2.6), the potential vorticity is 
redistributed by the Ekman layers so that the interior motion remaining when 
r becomes large satisfies an analogy to (4.5), i.e. the no-slip condition on the 
azimuthal velocity on the horizontal boundaries. With conditions (2 .5 )  both 
Ekman and buoyancy layers adjust the potential vorticity because the asymp- 
totic interior motions must satisfy the temperature boundary condition at the 
side wall as well as the no-slip requirement on the horizontal surfaces. There is 
a clear distinction in the interior meridional flows during the r time scale in each 
case. The insulation condition, demanding that the total normal temperature 
gradient vanish a t  the side wall, restricts most severely the gradient in the 
thinnest (buoyancy) layer, or in other words inhibits heat exchange between fluid 
and wall as fluid elements travel vertically. This amounts to a suppression of 
buoyancy-layer motions comparable to those in the Ekman layer, and con- 
sequently the entire meridional circulation tends to be confined near the Ekman 
layers. The distance of significant penetration of the interior motions from a 
horizontal boundary was found to be O(S-8) by Walin (1969) and earlier by 
Lineykin (1955). Both Pedlosky (1967, equation (6.30)) and Sakurai (1969a, 
equation (63)) indicated that with fixed temperature conditions there are modal 
solutions in which significant motions are not confined in this manner. This is not 
unexpected if we apply the understanding gained from the modes (4.10) in a 
sphere and regard the solutions in the cylinder as necessary to redistribute 
potential vorticity so that the side-wall temperature boundary condition can be 
satisfied for large r.  One rather surprising consequence of this interpretation is 
that Pedlosky’s solution (6.30), which is convincing by its very simplicity, cannot 
be the only time-dependent mode excited in the spin-down problem even for the 
particular parameter relation given by Pedlosky. By itself this mode conserves 
potential vorticity, and there is no way to add toit  a time-independent part which 
takes up the initial potential vorticity, ensures that the sum will satisfy both 
initial conditions, and allows the steady portion to satisfy the necessary side-wall 
boundary condition. The time-dependent portion of the azimuthal velocity in 
spin down evidently must vary with z, and for all values of CT and X the modal 
sum in a cylinder with constant temperature boundary conditions is complicated. 

The work summarized by table 1 in Sakurai (1  969 6 )  indicates the quantitative 
effect of the side-wall temperature boundary condition on the total angular 
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momentum remaining in the interior of a cylinder as r -+ m. Such results may be 
obtained much more directly by simply solving the equation of conservation of 
potential vorticity with the appropriate asymptotic (large r )  boundary condi- 
tions, thereby avoiding the involved computations for the time-dependent 
solutions. Furthermore, although the asymptotic total interior angular momen- 
tum is areasonable measure of spin-down per se, the ease of finding the asymptotic 
solutions permits pointwise determination of the flow quantities. For example, 
since 2L. v x u + ~-111, = 4, contours for large r of constant vertical vorticity 
show the spatial distribution of the conversion of the initial vorticity. The basic 
point is that potential vorticity conservation is surely the most potent means of 
describing the dynamics of nearly geostrophic motions in a rotating stratified 
fluid, and it should be exploited fully whenever it is applicable. Ignoring its 
implications would lead to confusion from the following sentence in Sakurai 
(19696, $5): “The case with infinitely large radius is equivalent to that with 
vanishing effect of stratification.” This is of course true in so far as the attainment 
of rigid rotation is concerned, but for a cylinder of infinitely large radius with 
S $. 0, a temperature gradient constant in z must develop as r -+ co to conserve 
potential vorticity. This gradient is obviously absent in the homogeneous case 
studied by Greenspan & Howard (1963), and it points up the dynamical differ- 
ences in the cases ro = A -+ co and s-+ 0. A further cautionary note is that the 
limit ro -+ 00 in Sakurai’s solutions (70) and (7  1) is non-uniform, as is particularly 
clear from (71); weakly converging series have been a constant source of errors 
in solutions of spin down. Another formulation for the infinite disk problem which 
emphasizes potential vorticity conservation was given by Walin (1969). 

Holton (1965) found a solution to (4.1) for a spin-up problem (with homo- 
geneous initial conditions and inhomogeneous Ekman boundary conditions) , and 
in addition he made oertain measurements of the angular velocity remaining as 
7 -+ co. It is now known that the time-dependent portion of his solution is incorrecti 
and that the time-independent constituent corresponds to problem I boundary 
conditions. However, Holton stratified his fluid with salt, so that the conditions 
of problem I1 and hence Walin’s (1969) solution (5.23) are applicable to his 
experiments. Making some minor modifications of Walin’s expression for large r 
and performing the series summations by standard means, we can directly com- 
pare the data presented by Holton with the correct asymptotic solution, shown 
by the solid curves in figures 1 and 2 (the boxes indicate the accuracy to which 
Holton’s data was read from his figures). The dotted curves are those which 
Holton compared with his data, and in addition to being qualitatively very 
similar to the solid curves, their fit to the data is remarkably accurate. The only 
presently available experimental data for stratified spin down are therefore not in 
particularly good agreement with the linear theory formulated in 0 2. Holton’s 
data shows less inhibition of the attainment of rigid rotation than would be 
expected for a stratified fluid on the basis of Walin’s solution. The most probable 
causes are the slight motions in the basic state caused by ourvature of the mean 
isodensity lines (Barcilon & Pedlosky 1967 a; Phillips 1970) and the instabilities 
prevalent near container boundaries, both of which processes tending to reduce 
the effective stratification. 

45 2 
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Since both solid curves are based on Walin’s results, it is appropriate at this 
point t o  make two comments connected with their applicability. An experimental 
and theoreticaI estimate is sorely needed for the non-dimensional length scale 1, 
(see Walin 1969, p. 305) of the region where the initial conditions on the 7 time 
scale are smoothed to zero, since only the crude bound lc > O(E4) is now certain. 
This quantity should be distinguished from the length 1 of the region starting at  the 
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FIUURE 1. Angular velocity for 7 -+ co at T = &A and the midplane of the cylinder, plotted 
against S-l. ----, from Holton (1965); -, from Walin (1969); 0, from Holton (1965). 

corner where the flux leaves the boundary layer. The vertical velocity at the edge 
of the boundary layer associated with Walin’s solution (5.23) can be shown to 
vanish for a point R < A for any T > 0, so that I = O( 1) because the Ekman layer 
flux is not unidirectional along the horizontal extent of the layer. It is not neces- 
sarily true that I, is O( l ) ,  however. In  addition, Walin suggests that the condition 
E < E4 may be replaced by E < 1 for axisymmetric problems like spin down. 
More precisely, the spin-down dynamics described in his paper and in this one 
require that E should be small compared to one and that derivatives with 
respect to q5 of the lowest-order azimuthal velocity and temperature fields 
should be O(E4) smaller than the fields themselves. These constraints are 
weaker than the strict axisymmetry and bound on E imposed formally in $ 2  
and are more likely to be satisfied under experimental conditions. 
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The essential consequence of spin down governed by the constraint of potential 
vorticity conservation is that the adjustment of the fluid to a state of rigid 
rotation is almost never achieved until that constraint is broken (Sakurai's 
similarity solution for two infinite disks is the exception). If the very stringent 
assumption is made that equations (2.1)-(2.3) hold throughout the fluid during 
the time scales when the potential vorticity is dissipated, and if the stratification 
is strong enough and the thermal diffusion not so rapid that potential vorticity is 
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-0.2 - 

-0.4 - 

I 
1.0 0.8 0.6 0.4 0.2 0 

V, lr 
FIGURE 2. Angular velocity for T + 03 at r = *A,  plotted against z for 8-l = 2.2 and 
S-1 = 0.5. ----, from Holton (1965) ; -, fromwalin (1969) ; W, 0, from Holton (1965). 

lost before the T time scale, then the complete decay of the initially imposed 
vorticity occurs on the shorter of the two time scales E-l and (cr/E). This con- 
clusion can be demonstrated by careful although somewhat lengthy analysis, but 
because of the arbitrary nature of the assumption of the validity of (2.1)-(2.3), 
it is sufficient here to just indicate that the conclusion rests on two basic con- 
siderations. First, the initial conditions for determination of the dynamics on 
any longer time scale may be taken as the asymptotic solutions remaining as 
T+ 00. This ia of course the same principle used in solving the problem on the 
T time scale, and doing so on the longer time scales avoids inconsistencies of the 
type with which Holton & Stone (1968) were concerned. Secondly, considering 
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for the moment g 9 1, it is easy to see that no order one z-dependent azimuthal 
velocity is permitted on the longer time scale a/E. For from the azimuthal 
component of (2.1)) if v = O(1) than u = O(E), and (2.3) requires w = O(E) also. 
The thermal wind relation from the r and z components of (2.1) means that if 
v, = 0(1), then T, = O(1). But then (2.2) implies w is zero to order E,  which says 
that in fact v, = 0 to  order one. Since no boundary layers occur on the long time 
scale, the no-slip condition requires v = 0. When c-+ 0 a similar argument shows 
that no order one azimuthal velocity is allowed on the longer time E-l. These 
two results are tantamount to determining the decay time of the initial vorticity. 

Interest in $he eventual fate of the potential vorticity in stratified fluids with 
varying Prandtl numbers is motivated by two illustrations of spin down in the 
recent literature, the solar application with small Prandtl number and stratifica- 
tion by salt with large Prandtl number. Howard (unpublished) described the 
very different dynamics in the limiting case a = O(E4) and verified complete 
spin down in the T time scale, extending to and quantifying for a particular 
time-dependent flow the observation of Greenspan (1968, p. 126) that the steady 
flow when diffusion overwhelms conduction is in overall effect related to that in 
a homogeneous fluid. In an experiment designed to provide precision velocity 
measurements, McDonald & Dicke (1967) demonstrated that spin up in a 
cylinder stratified by cupric nitrate (8 approximately 3 and G large) was well 
described by a version of the solution of Pedlosky (1967) based on the diffusive 
dissipation of potential vorticity and, in particular, was completed within the 
time predicted by neglecting density diffusion. It should be emphasized that 
unless the parameters E and F' satisfy more severe restrictions than those 
specified in 5 2, processes connected with non-infinitesimal perturbation ampli- 
tude or with non-negligible centrifugal bending of the mean isodensity lines 
violate potential vorticity conservation earlier than diffusive effects acting alone 
in the interior. When and how this occurs is still uncertain. 
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